Những gì dưới đây được xem như tài liệu sưu tầm tổng hợp từ nhiều nguồn khác nhau, mục đích để tìm kiếm những kiến thức cho bản thân và những thay đổi của khoa học tiến triển của nhân loại. Ngoài ra chưa có mục đích tham gia chỉnh sửa gì về những bài sưu tầm
Youtube
http://www.youtube.com/Nano
Công nghệ Nano Công nghệ
Tài liệu tham khảo từ các bài báo trong và ngoài nước về công nghệ Nano
Từ liên kết trên sẽ tìm được vô sô những hiểu biết căn bản về
Công nghệ Nano do Wikipedia phát hành
Khoa học Nano và Công nghệ Consortium (NSTC) là một hiệp hội ngành công nghiệp tư nhân được thành lập vào năm 2005 để cung cấp dịch vụ trong học tập và kiến thức công nghệ nano.
Bắt đầu từ đó, nó đã xuất bản hai định kỳ . Tạp chí NanoTrends , một tạp chí khoa học nano và công nghệ, xuất bản ở định dạng trực tuyến mỗi tháng và in mỗi sáu tháng . Nó cung cấp cho công bố tăng tốc của các bài báo nghiên cứu liên quan đến lĩnh vực nano và các ứng dụng của nó. Các bản tin trực tuyến Nano Spectacle được công bố hàng tháng. Tóm tắt sự phát triển những tháng cuối cùng liên quan đến nano thế giới và bao gồm các chủ đề như các sự kiện sắp tới, những cuốn sách mới phát hành, cuốn sách đánh giá.
Xã hội đã đưa ra "Chương trình đào tạo từ xa Tính về Công nghệ nano". cung cấp hướng dẫn cho sinh viên về các chủ đề khác nhau và các lĩnh vực Khoa học và Công nghệ Nano. Nó cũng tài trợ cho hội thảo và các sự kiện giáo dục khác.
http://www.youtube.com/Nano
Những khái niệm về Nano
Công nghệ Nano là gì?
Thuật ngữ công nghệ Nano (nano technology) chỉ việc nghiên cứu, học tập, tổng hợp và sử dụng các loại vật liệu, thiết bị hay kể cả các hệ thống có kích thước cỡ nano (1 phần tỷ mét). Công nghệ nano có ứng dụng rất lớn trong cuộc sống và là một công nghệ triển vọng ngay tại thời điểm hiện tại lẫn tương lai. Thử tưởng tượng có những thiết bị nhỏ cỡ nano có thể đi vào trong con người, tìm ra các bộ phận bị “ốm” và tuyệt hơn là góp phần làm bộ phận đó “khỏe” trở lại. Công nghệ này cũng được đánh giá là sạch (ít gây ô nhiễm) và hiệu quả hơn các công nghệ hiện tại.
Thật khó khăn để tưởng tượng là 1 phần tỷ mét thì sẽ như thế nào. Hãy làm một vài con số so sánh để các bạn có thể tưởng tượng được nhé. Một phân tử nước có đường kính khoảng 0.3nm, DNA là 2.5nm, một con virus thường có đường kính từ 20-250nm, vi khuẩn là khoảng 1000nm, hồng cầu là 7000nm, tế bào bình thường của con người cỡ khoảng 20.000 nm và độ dày của một sợi tóc là 80.000 nm (0.08mm). Một nano chỉ nhỏ bằng 1/80.000 độ dày của sợi tóc bạn!
Có thể bạn cũng sẽ nghe nhiều tới thuật ngữ “ống nano” mà không biết nó là gì ra sao. Ống nano (như hình trên) là một trong những “siêu sao” đương thời của công nghệ nano, được phát minh ra từ năm 1991 và có đường kính khoảng từ 0.6 tới 1.8 nm. Ống nano có các thuộc tính kim loại và bán dẫn như dẫn điện, dẫn nhiệt… Tuy vậy, trở ngại lớn của việc tạo ra các ống nano từ các nguyên tử là độ dài của ống vẫn còn đang rất giới hạn. Ống dài nhất cho tới ngày nay có chiều dài chỉ là 4cm.
Công nghệ nano có thể được áp dụng trong rất nhiều ngành. Ví dụ như ngành CNTT (sử dụng chip nano), vật liệu mới (nhẹ nhưng lại bền hơn kim loại), robotic (các nanorobot có kích thước cực nhỏ), mỹ phẩm (tẩy tế bào chết), thuốc, quần áo, năng lượng (tiết kiệm năng lượng hơn sử dụng kim loại để truyền dẫn) và lưu trữ dữ liệu (công nghệ nano cho phép lưu trữ 100GB chỉ với thẻ nhớ có kích thước 3mm vuông).
Under Creative Commons License: Attribution Non-Commercial
Công nghệ nano và ứng dụng
Ngày nay, có thể ta tình cờ nghe một vài vấn đề nào đó hoặc một sản phẩm nào đó có liên quan đến hai chữ “nano”. Ở khoảng nửa thế kỷ trước, đây thực sự là một vấn đề mang nhiều sự hoài nghi về tính khả thi, nhưng trong thời đại ngày nay ta có thể thấy được công nghệ nano trở thành một vấn đề hết sức thời sự và được sự quan tâm nhiều hơn của các nhà khoa học. Các nước trên thế giới hiện nay đang bước vào một cuộc chạy đua mới về phát triển và ứng dụng công nghệ nano.
I. Một vài khái niệm về công nghệ nano.
Chữ nano, gốc Hy Lạp, được gắn vào trước các đơn vị đo để tạo ra đơn vị ước giảm đi 1 tỷ lần(10-9). Ví dụ : nanogam = 1 phần tỷ của gam ; nanomet = 1 phần tỷ mét. Công nghệ nano là công nghệ xử lý vật chất ở mức nanomet. Công nghệ nano tìm cách lấy phân tử đơn nguyên tử nhỏ để lắp ráp ra những vật to kích cỡ bình thường để sử dụng, đây là cách làm từ nhỏ đến to khác với cách làm thông thường từ trên xuống dưới, từ to đến nhỏ.
Ý tưởng cơ bản về công nghệ nano được đưa ra bởi nhà vật lý học người Mỹ Richard Feynman vào năm 1959, ông cho rằng khoa học đã đi vào chiều sâu của cấu trúc vật chất đến từng phân tử, nguyên tử vào sâu hơn nữa. Nhưng thuật ngữ “công nghệ nano” mới bắt đầu được sử dụng vào năm 1974 do Nario Taniguchi một nhà nghiên cứu tại trường đại học Tokyo sử dụng để đề cập khả năng chế tạo cấu trúc vi hình của mạch vi điện tử.
Vật liệu ở thang đo nano, bao gồm các lá nano, sợi và ống nano, hạt nano được điều chế bằng nhiều cách khác nhau. Ở cấp độ nano, vật liệu sẽ có những tính năng đặc biệt mà vật liệu truyền thống không có được đó là do sự thu nhỏ kích thước và việc tăng diện tích mặt ngoài của loại vật liệu này.
Để hiểu rõ về công nghệ nano, ta phải tìm hiểu khái niệm về vật liệu nano
• Vật liệu Nano
Vật liệu Nano có thể được định nghĩa một cách khái quát là loại vật liệu mà trong cấu trúc của các thành phần cấu tạo nên nó ít nhất phải có một chiều ở kích thước nanomet.
• Công nghệ nano :
Công nghệ nano bao gồm việc thiết kế, chế tạo và ứng dụng các cấu trúc, thiết bị hay hệ thống ở kích thước nanomet (1nm = 10-9m).
Vật liệu nanocomposite là loại vật liệu nano có ứng dụng rộng rãi cả trong kỹ thuật và dân dụng. Nanocomposite bao gồm cả ba loại nền kim lọai, nền gốm và nền polymer. Ở đây, ta chỉ đề cập chủ yếu đến nanocomposite trên cơ sở chất nền là polymer.
Vật liệu nanocomposite polymer : là loại vật liệu composite-polymer với hàm lượng chất gia cường thấp ( 1-7%) và chất gia cường này phải ở kích thước nanomet.
Pha gia cường ở kích thước nanomet được sử dụng trong lĩnh vực nanocomposite thường là hạt nano và ống carbon (carbon nanotube). Các phương pháp được sử dụng phổ biến hiện nay để chế tạo vật liệu nanocomposite polymer là phương pháp insitu, nóng chảy, nhũ tương và phương pháp dung dịch.
II. Những ứng dụng của công nghệ nano
Trong ngành công nghiệp hiện nay, các tập đoàn sản xuất điện tử đã bắt đầu đưa công nghệ nano vào ứng dụng, tạo ra các sản phẩm có tính cạnh tranh từ chiếc máy nghe nhạc iPod nano đến các con chip có dung lượng lớn với tốc độ xử lý cực nhanh … Trong y học, để chữa bệnh ung thư người ta tìm cách đưa các phân tử thuốc đến đúng các tế bào ung thư qua các hạt nano đóng vai trò là “ xe tải kéo”, tránh được hiệu ứng phụ gây ra cho các tế bào lành. Y tế nano ngày nay đang nhằm vào những mục tiêu bức xúc nhất đối với sức khỏe con người, đó là các bệnh do di truyền có nguyên nhân từ gien, các bệnh hiện nay như: HIV/AIDS, ung thư, tim mạch, các bệnh đang lan rộng hiện nay như béo phì, tiểu đường, liệt rung (Parkison), mất trí nhớ (Alzheimer), rõ ràng y học là lĩnh vực được lợi nhiều nhất từ công nghệ này. Đối với việc sửa sang sắc đẹp đã có sự hình thành nano phẩu thuật thẩm mỹ,nhiều lọai thuốc thẩm mỹ có chứa các loại hạt nano để làm thẩm mỹ và bảo vệ da. Đây là một thị trường có sức hấp dẫn mạnh, nhất là đối với công nghệ kiệt xuất mới ra đời như công nghệ nano.
Ngoài ra, các nhà khoa học tìm cách đưa công nghệ nano vào việc giải quyết các vấn đề mang tính toàn cầu như thực trạng ô nhiễm môi trường ngày càng gia tăng. Việc cải tiến các thiết bị quân sự bằng các trang thiết bị, vũ khí nano rất tối tân mà sức công phá khiến ta không thể hình dung nổi.
* Vật liệu nano composite polymer có các ứng dụng tiêu biểu như sau:
• ống nano carbon
Composite sợi carbon trước đây rất nổi tiếng vì nhẹ, bền, ít bị tác dụng hóa học nếu thay sợi carbon bằng ống nanocarbon chắc chắn sẽ làm vật liệu nhẹ hơn nhiều, được sử dụng trên các phương tiện cần giảm trọng lượng như máy bay…
Hiện nay, sợi carbon và các bó ống carbon đa lớp được dùng gia cường cho polymer để điều khiển và nâng cao tính dẫn, dùng làm bao bì chống tĩnh điện hay làm vật liệu cấy vào cơ thể vì carbon dễ tương hợp với xương, mô…, làm các màng lọc cũng như linh kiện quang phi tuyến.
Một hướng mới hiện nay là dùng ống nano carbon để gia cường cho polymer nhưng không phải để tạo ra cấu trúc nanocomposite mà để thay đổi tính chất quang điện của polymer. Ví dụ như PPV (m-phenylenevinylene-co-dioctoxy-p-phenylenevinylene) sau khi được gia cường với ống nano carbon, độ dẫn điện tăng lên 8 lần, bền cơ lý hơn PMMA/ống carbon nano được dùng làm kính hiển vi quang học dưới điện trường một chiều áp vào là 0.3kV/mm.
• hạt nano:
Đất sét chứa các hạt nano là loại vật liệu xây dựng lâu đời. Hiện nay, polymer gia cường bằng đất sét (nanoclay) được ứng dụng khá nhiều như dùng trong bộ phận hãm xe hơi. Ngoài ra có thể sử dụng hạt carbon đen có kích thước 10 đến 100 nm để gia cường cho vỏ xe hơi.
Polymer/đất sét có thể làm vật liệu chống cháy, ví dụ như một số loại nanocomposite của Nylon 6/silicate, PS/layered silicate…hay vật liệu dẫn điện như nanocomposite PEO/Li-MMT (MMT = Montmorillonite) dùng trong pin, vật liệu phân hủy sinh học như PCL/MMT hay PLA/MMT.
Ngoài ra, khi các polymer như ABS, PS, PVA…được gia cường hạt đất sét khác nhau sẽ cải thiện đáng kể tính chất cơ lý của polymer và có những ứng dụng khác nhau như ABS/MMT làm khung xe hơi hay khung máy bay, PMMA/MMT làm kính chắn gió, PVA/MMT làm bao bì…
Các hạt nano được sử dụng trong sơn có thể cải thiện đáng kể tính chất như làm cho lớp sơn mỏng hơn, nhẹ hơn, sử dụng trong máy bay nhằm giảm trọng lượng máy bay.
Ngoài đất sét ra thì trong vật liệu nanocomposite polymer còn sử dụng các hạt ở kích thước nanomet như hạt CuS, CdS, CdSe…Ví dụ như PVA với hàm lượng hạt CuS (~20nm-12nm) là 15-20% thể tích cho độ dẫn điện cao nhất, trong khi nếu các hạt CuS ở kích thước 10µm, muốn đạt được độ dẫn điện tương ứng thì hàm lượng CuS phải là 40%. Nanocomposite polymer nano CdS, CdSe, ZnO,ZnS còn được sử dụng như những vật liệu cảm quang trong phim, giấy ảnh, mực in, bột photocopy, mực in màu.
Vật liệu nano
Đây là đối tượng nghiên cứu của khoa học nano và công nghệ nano, nó liên kết hai lĩnh vực trên với nhau. Tính chất của vật liệu nano bắt nguồn từ kích thước của chúng, vào cỡ nanômét, đạt tới kích thước tới hạn của nhiều tính chất hóa lý của vật liệu thông thường. Đây là lý do mang lại tên gọi cho vật liệu.
Kích thước vật liệu nano trải một khoảng từ vài nm đến vài trăm nm phụ thuộc vào bản chất vật liệu và tính chất cần nghiên cứu.
Đây là một bài báo rất hữu ích cho các sinh viên đang học về ngành sinh - lý - hóa trong lĩnh vực thông tin về các ứng dụng của công nghệ nano trong khoa học ngày nay..,
- Co-Editors: A. Paul Alivisatos &Charles M. Lieber
- Editors
- About the Journal
- Author Index
- Recommend This Journal
About the Cover:
Strengthening the coupling between a semiconductor nanowire and a metal gate is an important goal in the development of nanowire transistors. The first devices were simply gated from underneath using a doped semiconductor substrate, but the ultimate coupling comes from having a coaxial metal gate wrapped around the entire circumference of the nanowire. This has been achieved with the nanowires in the vertical orientation; however, the fabrication process for these devices is arduous. A variation of this process has been used to create the horizontal wrap-gate nanowire transistor shown here; a major advantage of this process is the comparative ease with which these devices can be made and the ability to tune the length of the wrap-gate via a single wet-etch step. Kristian Storm, Gustav Nylundt, Lars Samuelson, and Adam P. Micolich, p 1. View the article.
ubangstrom Profile Imaging of Relaxed ZnO(101̅0) Surfaces
Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Nano Lett., Article ASAP
DOI: 10.1021/nl2036172
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: jzhu@mail.tsinghua.edu.cn.
Abstract
Relaxation is a most basic structural behavior of free surfaces, however, direct observation of surface relaxation remains challenging in atomic-scale. Herein, single-crystalline nanoislands formed in situ on ZnO nanowires and nanobelts are characterized using aberration-corrected transmission electron microscopy combined with ab initio calculations. For the first time, displacements of both Zn and O atoms in the fresh (101̅0) facets are quantified to accuracies of several picometers and the under-surface distributions of contractions and rotations of Zn–O bonds are directly measured, which unambiguously verify the theoretically predicted relaxation of ZnO (101̅0) free surfaces. Finally, the surface relaxation is directly correlated with the size effects of electromechanical properties (e.g., elastic modulus and spontaneous polarization) in ZnO nanowires.
Keywords:
Surface structure; relaxation; ZnO; transmission electron microscopy; electromechanical properties
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: October 13, 2011
Revised: December 16, 2011
Recommend & Share
Letter
Plasmon Bleaching Dynamics in Colloidal Gold–Iron Oxide Nanocrystal Heterodimers
NanoPhysics and NanoChemistry Units, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
Nano Lett., Article ASAP
DOI: 10.1021/nl2039875
Publication Date (Web): January 9, 2012
Copyright © 2012 American Chemical Society
*E-mail: alberto.comin@iit.it. Fax: (+39 010 71781 236).
Abstract
Colloidal nanocrystal heterodimers composed of a plasmonic and a magnetic domain have been widely studied as potential materials for various applications in nanomedicine, biology, and photocatalysis. One of the most popular nanocrystal heterodimers is represented by a structure made of a Au domain and a iron oxide domain joined together. Understanding the nature of the interface between the two domains in such type of dimer and how this influences the energy relaxation processes is a key issue. Here, we present the first broad-band transient absorption study on gold/iron oxide nanocrystal heterodimers that explains how the energy relaxation is affected by the presence of such interface. We found faster electron–electron and electron–phonon relaxation times for the gold “nested” in the iron oxide domain in the heterodimers with respect to gold “only” nanocrystals, that is, free-standing gold nanocrystals in solution. We relate this effect to the decreased electron screening caused by spill-out of the gold electron distribution at gold/iron oxide interface.
Keywords:
Nanocrystals; plasmon; carrier dynamics; gold/iron oxide hetero nanocrystals
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 09, 2012
- Received: November 12, 2011
Revised: December 29, 2011
Recommend & Share
Letter
Transport/Magnetotransport of High-Performance Graphene Transistors on Organic Molecule-Functionalized Substrates
† Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
‡ Department of Materials Science and Engineering,National Taiwan University, Taipei 106, Taiwan
Nano Lett., Article ASAP
DOI: 10.1021/nl204036d
Publication Date (Web): January 6, 2012
Copyright © 2012 American Chemical Society
*(W.-H.W.) Tel: +886-2-2366-8208. Fax: +886-2-2362-0200. E-mail: wwang@gate.sinica.edu.tw. (C.-W.C.) Tel: +886-2-3366-5205. Fax: +886-2-2363-4562. E-mail: chunwei@ntu.edu.tw.
§ Author Present Address
Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.
Abstract
In this article, we present the transport and magnetotransport of high-quality graphene transistors on conventional SiO2/Si substrates by modification with organic molecule octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs). Graphene devices on OTS SAM-functionalized substrates with high carrier mobility, low intrinsic doping, suppressed carrier scattering, and reduced thermal activation of resistivity at room temperature were observed. Most interestingly, the remarkable magnetotransport of graphene devices with pronounced quantum Hall effect, strong Shubnikov-de Haas oscillations, a nonzero Berry’s phase, and a short carrier scattering time also confirms the high quality of graphene on this ultrasmooth organic SAM-modified platform. The high-performance graphene transistors on the solution-processable OTS SAM-functionalized SiO2/Si substrates are promising for the future development of large-area and low-cost fabrications of graphene-based nanoelectronics.
Keywords:
Graphene; high carrier mobility; magnetotransport; organic molecules; surface-functionalized substrates; self-assembled monolayer
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 06, 2012
- Received: November 16, 2011
Revised: January 03, 2012
Recommend & Share
Letter
Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry
School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, Massachusetts 02138, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl204257g
Publication Date (Web): January 9, 2012
Copyright © 2012 American Chemical Society
*E-mail: (T.E.) tale@seas.harvard.edu. Tel: +1-617-4952941. (K.B.C.) kcrozier@seas.harvard.edu. Tel: +1-617-4961441.
Abstract
Color filters are widely used in color displays, optical measurement devices, and imaging devices. Conventional color filters have usually only one fixed output color. However developing active color filters with controllable color output can lead to more compact and sophisticated color filter-based devices and applications. Recent progress in nanotechnology and new knowledge of the interaction of light with metal nanostructures allow us to capture and control light better than ever. Here we use it to fabricate active color filters, based on arrays of metallic optical nanoantennas that are tailored to interact with light at visible frequencies via excitation of localized surface plasmons. This interaction maps the polarization state of incident white light to visible color. Similarly, it converts unpolarized white light to chromatically polarized light. We experimentally demonstrate a wide range of applications including active color pixels, chromatically switchable and invisible tags, and polarization imaging based on these engineered colored metasurfaces.
Keywords:
Nano antennas; localized surface plasmons; tunable color filters; polarimetry; color pixels; plasmonic color filters
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 09, 2012
- Received: December 03, 2011
Revised: December 28, 2011
Recommend & Share
Letter
Two-Dimensional Electronic Spectroscopy Reveals the Dynamics of Phonon-Mediated Excitation Pathways in Semiconducting Single-Walled Carbon Nanotubes
† Department of Chemistry, University of California, Berkeley, California 94720, United States
‡ Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§ Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl2038503
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: grfleming@lbl.gov.
Abstract
Electronic two-dimensional Fourier transform (2D-FT) spectroscopy is applied to semiconducting single-walled carbon nanotubes and provides a spectral and time-domain map of exciton–phonon assisted excitations. Using 12 fs long pulses, we resolve side-bands above the E22 transition that correspond with the RBM, G, G′, 2G and other multiphonon modes. The appearance of 2D-FT spectral cross-peaks explicitly resolves discrete phonon assisted population transfer that scatters excitations to the E22 (Γ-pt) state, often through a second-order exciton–phonon coupling process. All 2D-FT peaks exhibit a strong peak amplitude modulation at the G-band period (21 fs) which we show originates from an impulsive stimulated Raman process that populates a ground-state G-band vibrational coherence over a 1.3 ps phonon lifetime.
Keywords:
ultrafast; carbon nanotubes; multidimensional spectroscopy; multiphonon assisted transition; phonon side-band; femtosecond dynamics
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: November 02, 2011
Revised: December 19, 2011
Recommend & Share
Letter
A Stable “Flat″ Form of Two-Dimensional Crystals: Could Graphene, Silicene, Germanene Be Minigap Semiconductors?
† Department of Physics, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
‡ University of Glasgow, Glasgow G61 1QH, United Kingdom
§ Institute for Theoretical and Applied Electrodynamics,Russian Academy of Sciences, Izhorskaya Street 13, Moscow, 125412 Russia
Nano Lett., Article ASAP
DOI: 10.1021/nl204283q
Publication Date (Web): January 11, 2012
Copyright © 2012 American Chemical Society
Abstract
The discovery of a flat two-dimensional crystal known as graphene has contradicted Landau–Peierls–Mermin–Wagner arguments that there is no stable flat form of such crystals. Here, we show that the “flat” shape of graphene arises due to a microscopic buckling at the smallest possible interatomic scale. We show that the graphene, silicene, and other two-dimensional crystals are stable due to transverse short-range displacements of appropriate atoms. The distortions are small and form various patterns, which we describe in a framework of Ising model with competing interactions. We show that when temperature decreases, two transitions, disorder into order and order into disorder, arise. The ordered state has a form of stripes where carbon atoms are shifted regularly with respect to the plane. The flat graphene, silicene, or germanene planes look like a microscopic “washboard” with the wavelength of about couple of interatomic spacing of appropriate sublattices, which for graphene is about 1.8–3.6 Å. At lower temperatures, the ordered state transforms into a glass. Because of up–down asymmetry in buckled graphene, silicene and other two-dimensional crystals deposited on substrate, a minibandgap may arise. We derive a criterion for the minigap formation and show how it is related to the buckling and to the graphene–substrate interaction. Because of the bandgap, there may arise new phenomena and in particular a rectification of ac current induced by microwave or infrared radiation. We show that the amplitude of direct current arising at wave mixing of two harmonics of microwave electromagnetic radiation is huge. Moreover, we predict the existence of miniexcitons and a new type of fermionic minipolaritons whose behavior can be controlled by the microwave and terahertz radiation.
Keywords:
Graphene; silicene; germanene; lattice distortions; superstructures
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 11, 2012
- Received: December 05, 2011
Revised: January 08, 2012
Recommend & Share
Addition/Correction
Correction to Translocation of Single-Wall Carbon Nanotubes Through Solid-State Nanopores
Nano Lett., Article ASAP
DOI: 10.1021/nl300143f
Publication Date (Web): January 19, 2012
Copyright © 2012 American Chemical Society
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
Recommend & Share
Letter
Sub-10 nm Carbon Nanotube Transistor
† IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, United States
‡ Integrated Systems Laboratory, ETH Zurich, 8092 Zurich, Switzerland
§ School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl203701g
Publication Date (Web): January 18, 2012
Copyright © 2012 American Chemical Society
*E-mail: aaronf@us.ibm.com.
Abstract
Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade—nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal–CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.
Keywords:
Carbon nanotube; field-effect transistor; sub-10 nm; transistor scaling; CNTFET
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Received: October 20, 2011
Revised: December 09, 2011
Recommend & Share
Letter
Shape-Dependent Oriented Trapping and Scaffolding of Plasmonic Nanoparticles by Topological Defects for Self-Assembly of Colloidal Dimers in Liquid Crystals
† Department of Physics, Materials Science and Engineering Program, Department of Electrical, Computer, and Energy Engineering, and Liquid Crystals Materials Research Center, University of Colorado at Boulder, Boulder, Colorado 80309, United States
‡ National Renewable Energy Laboratory, Golden, Colorado 80401, United States
§ Department of Chemistry, Rice University, Houston, Texas 77005, United States
Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado at Boulder, Boulder, Colorado 80309, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl204030t
Publication Date (Web): January 10, 2012
Copyright © 2012 American Chemical Society
*E-mail: ivan.smalyukh@colorado.edu.
Abstract
We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.
Keywords:
Plasmonic nanoparticles; nanoscale self-assembly; liquid crystal elasticity; colloids; topological defects; optical trapping
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 10, 2012
- Received: November 15, 2011
Revised: December 30, 2011
Recommend & Share
Letter
Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles
† Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
‡ Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
§ Department of Chemistry, University of Victoria, British Columbia, Canada V8W 3V6
Nano Lett., Article ASAP
DOI: 10.1021/nl203686d
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
Abstract
The mechanical behavior of carbon nanotube (CNT)-based fibers and nanocomposites depends intimately on the shear interactions between adjacent tubes. We have applied an experimental-computational approach to investigate the shear interactions between adjacent CNTs within individual double-walled nanotube (DWNT) bundles. The force required to pull out an inner bundle of DWNTs from an outer shell of DWNTs was measured using in situ scanning electron microscopy methods. The normalized force per CNT–CNT interaction (1.7 ± 1.0 nN) was found to be considerably higher than molecular mechanics (MM)-based predictions for bare CNTs (0.3 nN). This MM result is similar to the force that results from exposure of newly formed CNT surfaces, indicating that the observed pullout force arises from factors beyond what arise from potential energy effects associated with bare CNTs. Through further theoretical considerations we show that the experimentally measured pullout force may include small contributions from carbonyl functional groups terminating the free ends of the CNTs, corrugation of the CNT–CNT interactions, and polygonization of the nanotubes due to their mutual interactions. In addition, surface functional groups, such as hydroxyl groups, that may exist between the nanotubes are found to play an unimportant role. All of these potential energy effects account for less than half of the 1.7 nN force. However, partially pulled-out inner bundles are found not to pull back into the outer shell after the outer shell is broken, suggesting that dissipation is responsible for more than half of the pullout force. The sum of force contributions from potential energy and dissipation effects are found to agree with the experimental pullout force within the experimental error.
Keywords:
Carbon nanotube bundles; double-walled nanotubes; hierarchical structure; shear interactions; in situ SEM testing
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: October 19, 2011
Revised: December 20, 2011
Recommend & Share
Letter
Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California − Riverside, Riverside, California 92521, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl203906r
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: balandin@ee.ucr.edu. Website: http://ndl.ee.ucr.edu/.
† Author Present Address
KMFS was a summer intern at Global Foundries, Sunnyvale, California at the time of manuscript preparation. His present address is : Intel Corporation, Hillsboro, Oregon, 97124 United States.
Abstract
We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The “laser flash” measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (10–15%) present simultaneously with the thicker multilayers of large lateral size (1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of 5.8 W/mK to K = 14 W/mK at the small loading f= 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene–multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene’s aspect ratio and lower Kapitza resistance at the graphene–matrix interface.
Keywords:
Graphene; thermal interface materials; nanocomposites; liquid-face exfoliation
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: November 06, 2011
Revised: December 14, 2011
Recommend & Share
Letter
Genomic Design of Strong Direct-Gap Optical Transition in Si/Ge Core/Multishell Nanowires
† National Renewable Energy Laboratory, Golden, Colorado 80401, United States
‡ University of Colorado, Boulder, Colorado 80302, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl2040892
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: lijun_physics@yahoo.com.cn; alex.zunger@gmail.com.
Abstract
Finding a Si-based material with strong optical activity at the band-edge remains a challenge despite decades of research. The interest lies in combining optical and electronic functions on the same wafer, while retaining the extraordinary know-how developed for Si. However, Si is an indirect-gap material. The conservation of crystal momentum mandates that optical activity at the band-edge includes a phonon, on top of an electron–hole pair, and hence photon absorption and emission remain fairly unlikely events requiring optically rather thick samples. A promising avenue to convert Si-based materials to a strong light-absorber/emitter is to combine the effects on the band-structure of both nanostructuring and alloying. The number of possible configurations, however, shows a combinatorial explosion. Furthermore, whereas it is possible to readily identify the configurations that are formally direct in the momentum space (due to band-folding) yet do not have a dipole-allowed transition at threshold, the problem becomes not just calculation of band structure but also calculation of absorption strength. Using a combination of a genetic algorithm and a semiempirical pseudopotential Hamiltonian for describing the electronic structures, we have explored hundreds of thousands of possible coaxial core/multishell Si/Ge nanowires with the orientation of [001], [110], and [111], discovering some “magic sequences” of core followed by specific Si/Ge multishells, which can offer both a direct bandgap and a strong oscillator strength. The search has revealed a few simple design principles: (i) the Ge core is superior to the Si core in producing strong bandgap transition; (ii) [001] and [110] orientations have direct bandgap, whereas the [111] orientation does not; (iii) multishell nanowires can allow for greater optical activity by as much as an order of magnitude over plain nanowires; (iv) the main motif of the winning configurations giving direct allowed transitions involves rather thin Si shell embedded within wide Ge shells. We discuss the physical origin of the enhanced optical activity, as well as the effect of possible experimental structural imperfections on optical activity in our candidate core/multishell nanowires.
Keywords:
Silicon; light-emitting/absorbing; core/shell nanowire; genetic algorithm
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: November 21, 2011
Revised: December 19, 2011
Recommend & Share
Letter
Positionally Defined, Binary Semiconductor Nanoparticles Synthesized by Scanning Probe Block Copolymer Lithography
†Department of Materials Science and Engineering,‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl204233r
Publication Date (Web): January 17, 2012
Copyright © 2012 American Chemical Society
*E-mail: chadnano@northwestern.edu.
Author Contributions
These authors contributed equally.
Abstract
We report the first method for synthesizing binary semiconductor materials by scanning probe block copolymer lithography (SPBCL) in desired locations on a surface. In this work, we utilize SPBCL to create polymer features containing a desired amount of Cd2+, which is defined by the feature volume. When they are subsequently reacted in H2S in the vapor phase, a single CdS nanoparticle is formed in each block copolymer (BCP) feature. The CdS nanoparticles were shown to be both crystalline and luminescent. Importantly, the CdS nanoparticle sizes can be tuned since their diameters depend on the volume of the originally deposited BCP feature.
Keywords:
Scanning probe; lithography; block copolymer; semiconductor; cadmium sulfide nanoparticles
ubangstrom Profile Imaging of Relaxed ZnO(101̅0) Surfaces
Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Nano Lett., Article ASAP
DOI: 10.1021/nl2036172
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: jzhu@mail.tsinghua.edu.cn.
Abstract
Relaxation is a most basic structural behavior of free surfaces, however, direct observation of surface relaxation remains challenging in atomic-scale. Herein, single-crystalline nanoislands formed in situ on ZnO nanowires and nanobelts are characterized using aberration-corrected transmission electron microscopy combined with ab initio calculations. For the first time, displacements of both Zn and O atoms in the fresh (101̅0) facets are quantified to accuracies of several picometers and the under-surface distributions of contractions and rotations of Zn–O bonds are directly measured, which unambiguously verify the theoretically predicted relaxation of ZnO (101̅0) free surfaces. Finally, the surface relaxation is directly correlated with the size effects of electromechanical properties (e.g., elastic modulus and spontaneous polarization) in ZnO nanowires.
Keywords:
Surface structure; relaxation; ZnO; transmission electron microscopy; electromechanical propertiesTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: October 13, 2011
Revised: December 16, 2011
Recommend & Share
Letter
Plasmon Bleaching Dynamics in Colloidal Gold–Iron Oxide Nanocrystal Heterodimers
NanoPhysics and NanoChemistry Units, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
Nano Lett., Article ASAP
DOI: 10.1021/nl2039875
Publication Date (Web): January 9, 2012
Copyright © 2012 American Chemical Society
*E-mail: alberto.comin@iit.it. Fax: (+39 010 71781 236).
Abstract
Colloidal nanocrystal heterodimers composed of a plasmonic and a magnetic domain have been widely studied as potential materials for various applications in nanomedicine, biology, and photocatalysis. One of the most popular nanocrystal heterodimers is represented by a structure made of a Au domain and a iron oxide domain joined together. Understanding the nature of the interface between the two domains in such type of dimer and how this influences the energy relaxation processes is a key issue. Here, we present the first broad-band transient absorption study on gold/iron oxide nanocrystal heterodimers that explains how the energy relaxation is affected by the presence of such interface. We found faster electron–electron and electron–phonon relaxation times for the gold “nested” in the iron oxide domain in the heterodimers with respect to gold “only” nanocrystals, that is, free-standing gold nanocrystals in solution. We relate this effect to the decreased electron screening caused by spill-out of the gold electron distribution at gold/iron oxide interface.
Keywords:
Nanocrystals; plasmon; carrier dynamics; gold/iron oxide hetero nanocrystalsTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 09, 2012
- Received: November 12, 2011
Revised: December 29, 2011
Recommend & Share
Letter
Transport/Magnetotransport of High-Performance Graphene Transistors on Organic Molecule-Functionalized Substrates
† Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
‡ Department of Materials Science and Engineering,National Taiwan University, Taipei 106, Taiwan
Nano Lett., Article ASAP
DOI: 10.1021/nl204036d
Publication Date (Web): January 6, 2012
Copyright © 2012 American Chemical Society
*(W.-H.W.) Tel: +886-2-2366-8208. Fax: +886-2-2362-0200. E-mail: wwang@gate.sinica.edu.tw. (C.-W.C.) Tel: +886-2-3366-5205. Fax: +886-2-2363-4562. E-mail: chunwei@ntu.edu.tw.
§ Author Present Address
Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.
Abstract
In this article, we present the transport and magnetotransport of high-quality graphene transistors on conventional SiO2/Si substrates by modification with organic molecule octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs). Graphene devices on OTS SAM-functionalized substrates with high carrier mobility, low intrinsic doping, suppressed carrier scattering, and reduced thermal activation of resistivity at room temperature were observed. Most interestingly, the remarkable magnetotransport of graphene devices with pronounced quantum Hall effect, strong Shubnikov-de Haas oscillations, a nonzero Berry’s phase, and a short carrier scattering time also confirms the high quality of graphene on this ultrasmooth organic SAM-modified platform. The high-performance graphene transistors on the solution-processable OTS SAM-functionalized SiO2/Si substrates are promising for the future development of large-area and low-cost fabrications of graphene-based nanoelectronics.
Keywords:
Graphene; high carrier mobility; magnetotransport; organic molecules; surface-functionalized substrates; self-assembled monolayerTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 06, 2012
- Received: November 16, 2011
Revised: January 03, 2012
Recommend & Share
Letter
Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry
School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, Massachusetts 02138, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl204257g
Publication Date (Web): January 9, 2012
Copyright © 2012 American Chemical Society
*E-mail: (T.E.) tale@seas.harvard.edu. Tel: +1-617-4952941. (K.B.C.) kcrozier@seas.harvard.edu. Tel: +1-617-4961441.
Abstract
Color filters are widely used in color displays, optical measurement devices, and imaging devices. Conventional color filters have usually only one fixed output color. However developing active color filters with controllable color output can lead to more compact and sophisticated color filter-based devices and applications. Recent progress in nanotechnology and new knowledge of the interaction of light with metal nanostructures allow us to capture and control light better than ever. Here we use it to fabricate active color filters, based on arrays of metallic optical nanoantennas that are tailored to interact with light at visible frequencies via excitation of localized surface plasmons. This interaction maps the polarization state of incident white light to visible color. Similarly, it converts unpolarized white light to chromatically polarized light. We experimentally demonstrate a wide range of applications including active color pixels, chromatically switchable and invisible tags, and polarization imaging based on these engineered colored metasurfaces.
Keywords:
Nano antennas; localized surface plasmons; tunable color filters; polarimetry; color pixels; plasmonic color filtersTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 09, 2012
- Received: December 03, 2011
Revised: December 28, 2011
Recommend & Share
Letter
Two-Dimensional Electronic Spectroscopy Reveals the Dynamics of Phonon-Mediated Excitation Pathways in Semiconducting Single-Walled Carbon Nanotubes
† Department of Chemistry, University of California, Berkeley, California 94720, United States
‡ Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
§ Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl2038503
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: grfleming@lbl.gov.
Abstract
Electronic two-dimensional Fourier transform (2D-FT) spectroscopy is applied to semiconducting single-walled carbon nanotubes and provides a spectral and time-domain map of exciton–phonon assisted excitations. Using 12 fs long pulses, we resolve side-bands above the E22 transition that correspond with the RBM, G, G′, 2G and other multiphonon modes. The appearance of 2D-FT spectral cross-peaks explicitly resolves discrete phonon assisted population transfer that scatters excitations to the E22 (Γ-pt) state, often through a second-order exciton–phonon coupling process. All 2D-FT peaks exhibit a strong peak amplitude modulation at the G-band period (21 fs) which we show originates from an impulsive stimulated Raman process that populates a ground-state G-band vibrational coherence over a 1.3 ps phonon lifetime.
Keywords:
ultrafast; carbon nanotubes; multidimensional spectroscopy; multiphonon assisted transition; phonon side-band; femtosecond dynamicsTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: November 02, 2011
Revised: December 19, 2011
Recommend & Share
Letter
A Stable “Flat″ Form of Two-Dimensional Crystals: Could Graphene, Silicene, Germanene Be Minigap Semiconductors?
† Department of Physics, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
‡ University of Glasgow, Glasgow G61 1QH, United Kingdom
§ Institute for Theoretical and Applied Electrodynamics,Russian Academy of Sciences, Izhorskaya Street 13, Moscow, 125412 Russia
Nano Lett., Article ASAP
DOI: 10.1021/nl204283q
Publication Date (Web): January 11, 2012
Copyright © 2012 American Chemical Society
Abstract
The discovery of a flat two-dimensional crystal known as graphene has contradicted Landau–Peierls–Mermin–Wagner arguments that there is no stable flat form of such crystals. Here, we show that the “flat” shape of graphene arises due to a microscopic buckling at the smallest possible interatomic scale. We show that the graphene, silicene, and other two-dimensional crystals are stable due to transverse short-range displacements of appropriate atoms. The distortions are small and form various patterns, which we describe in a framework of Ising model with competing interactions. We show that when temperature decreases, two transitions, disorder into order and order into disorder, arise. The ordered state has a form of stripes where carbon atoms are shifted regularly with respect to the plane. The flat graphene, silicene, or germanene planes look like a microscopic “washboard” with the wavelength of about couple of interatomic spacing of appropriate sublattices, which for graphene is about 1.8–3.6 Å. At lower temperatures, the ordered state transforms into a glass. Because of up–down asymmetry in buckled graphene, silicene and other two-dimensional crystals deposited on substrate, a minibandgap may arise. We derive a criterion for the minigap formation and show how it is related to the buckling and to the graphene–substrate interaction. Because of the bandgap, there may arise new phenomena and in particular a rectification of ac current induced by microwave or infrared radiation. We show that the amplitude of direct current arising at wave mixing of two harmonics of microwave electromagnetic radiation is huge. Moreover, we predict the existence of miniexcitons and a new type of fermionic minipolaritons whose behavior can be controlled by the microwave and terahertz radiation.
Keywords:
Graphene; silicene; germanene; lattice distortions; superstructuresTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 11, 2012
- Received: December 05, 2011
Revised: January 08, 2012
Recommend & Share
Addition/Correction
Correction to Translocation of Single-Wall Carbon Nanotubes Through Solid-State Nanopores
Nano Lett., Article ASAP
DOI: 10.1021/nl300143f
Publication Date (Web): January 19, 2012
Copyright © 2012 American Chemical Society
Tools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
Recommend & Share
Letter
Sub-10 nm Carbon Nanotube Transistor
† IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, United States
‡ Integrated Systems Laboratory, ETH Zurich, 8092 Zurich, Switzerland
§ School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl203701g
Publication Date (Web): January 18, 2012
Copyright © 2012 American Chemical Society
*E-mail: aaronf@us.ibm.com.
Abstract
Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade—nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal–CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.
Keywords:
Carbon nanotube; field-effect transistor; sub-10 nm; transistor scaling; CNTFETTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Received: October 20, 2011
Revised: December 09, 2011
Recommend & Share
Letter
Shape-Dependent Oriented Trapping and Scaffolding of Plasmonic Nanoparticles by Topological Defects for Self-Assembly of Colloidal Dimers in Liquid Crystals
† Department of Physics, Materials Science and Engineering Program, Department of Electrical, Computer, and Energy Engineering, and Liquid Crystals Materials Research Center, University of Colorado at Boulder, Boulder, Colorado 80309, United States
‡ National Renewable Energy Laboratory, Golden, Colorado 80401, United States
§ Department of Chemistry, Rice University, Houston, Texas 77005, United States
Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado at Boulder, Boulder, Colorado 80309, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl204030t
Publication Date (Web): January 10, 2012
Copyright © 2012 American Chemical Society
*E-mail: ivan.smalyukh@colorado.edu.
Abstract
We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.
Keywords:
Plasmonic nanoparticles; nanoscale self-assembly; liquid crystal elasticity; colloids; topological defects; optical trappingTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 10, 2012
- Received: November 15, 2011
Revised: December 30, 2011
Recommend & Share
Letter
Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles
† Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
‡ Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
§ Department of Chemistry, University of Victoria, British Columbia, Canada V8W 3V6
Nano Lett., Article ASAP
DOI: 10.1021/nl203686d
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
Abstract
The mechanical behavior of carbon nanotube (CNT)-based fibers and nanocomposites depends intimately on the shear interactions between adjacent tubes. We have applied an experimental-computational approach to investigate the shear interactions between adjacent CNTs within individual double-walled nanotube (DWNT) bundles. The force required to pull out an inner bundle of DWNTs from an outer shell of DWNTs was measured using in situ scanning electron microscopy methods. The normalized force per CNT–CNT interaction (1.7 ± 1.0 nN) was found to be considerably higher than molecular mechanics (MM)-based predictions for bare CNTs (0.3 nN). This MM result is similar to the force that results from exposure of newly formed CNT surfaces, indicating that the observed pullout force arises from factors beyond what arise from potential energy effects associated with bare CNTs. Through further theoretical considerations we show that the experimentally measured pullout force may include small contributions from carbonyl functional groups terminating the free ends of the CNTs, corrugation of the CNT–CNT interactions, and polygonization of the nanotubes due to their mutual interactions. In addition, surface functional groups, such as hydroxyl groups, that may exist between the nanotubes are found to play an unimportant role. All of these potential energy effects account for less than half of the 1.7 nN force. However, partially pulled-out inner bundles are found not to pull back into the outer shell after the outer shell is broken, suggesting that dissipation is responsible for more than half of the pullout force. The sum of force contributions from potential energy and dissipation effects are found to agree with the experimental pullout force within the experimental error.
Keywords:
Carbon nanotube bundles; double-walled nanotubes; hierarchical structure; shear interactions; in situ SEM testingTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: October 19, 2011
Revised: December 20, 2011
Recommend & Share
Letter
Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California − Riverside, Riverside, California 92521, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl203906r
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: balandin@ee.ucr.edu. Website: http://ndl.ee.ucr.edu/.
† Author Present Address
KMFS was a summer intern at Global Foundries, Sunnyvale, California at the time of manuscript preparation. His present address is : Intel Corporation, Hillsboro, Oregon, 97124 United States.
Abstract
We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The “laser flash” measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (10–15%) present simultaneously with the thicker multilayers of large lateral size (1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of 5.8 W/mK to K = 14 W/mK at the small loading f= 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene–multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene’s aspect ratio and lower Kapitza resistance at the graphene–matrix interface.
Keywords:
Graphene; thermal interface materials; nanocomposites; liquid-face exfoliationTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: November 06, 2011
Revised: December 14, 2011
Recommend & Share
Letter
Genomic Design of Strong Direct-Gap Optical Transition in Si/Ge Core/Multishell Nanowires
† National Renewable Energy Laboratory, Golden, Colorado 80401, United States
‡ University of Colorado, Boulder, Colorado 80302, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl2040892
Publication Date (Web): January 3, 2012
Copyright © 2012 American Chemical Society
*E-mail: lijun_physics@yahoo.com.cn; alex.zunger@gmail.com.
Abstract
Finding a Si-based material with strong optical activity at the band-edge remains a challenge despite decades of research. The interest lies in combining optical and electronic functions on the same wafer, while retaining the extraordinary know-how developed for Si. However, Si is an indirect-gap material. The conservation of crystal momentum mandates that optical activity at the band-edge includes a phonon, on top of an electron–hole pair, and hence photon absorption and emission remain fairly unlikely events requiring optically rather thick samples. A promising avenue to convert Si-based materials to a strong light-absorber/emitter is to combine the effects on the band-structure of both nanostructuring and alloying. The number of possible configurations, however, shows a combinatorial explosion. Furthermore, whereas it is possible to readily identify the configurations that are formally direct in the momentum space (due to band-folding) yet do not have a dipole-allowed transition at threshold, the problem becomes not just calculation of band structure but also calculation of absorption strength. Using a combination of a genetic algorithm and a semiempirical pseudopotential Hamiltonian for describing the electronic structures, we have explored hundreds of thousands of possible coaxial core/multishell Si/Ge nanowires with the orientation of [001], [110], and [111], discovering some “magic sequences” of core followed by specific Si/Ge multishells, which can offer both a direct bandgap and a strong oscillator strength. The search has revealed a few simple design principles: (i) the Ge core is superior to the Si core in producing strong bandgap transition; (ii) [001] and [110] orientations have direct bandgap, whereas the [111] orientation does not; (iii) multishell nanowires can allow for greater optical activity by as much as an order of magnitude over plain nanowires; (iv) the main motif of the winning configurations giving direct allowed transitions involves rather thin Si shell embedded within wide Ge shells. We discuss the physical origin of the enhanced optical activity, as well as the effect of possible experimental structural imperfections on optical activity in our candidate core/multishell nanowires.
Keywords:
Silicon; light-emitting/absorbing; core/shell nanowire; genetic algorithmTools
- Add to Favorites
- Download Citation
- Email a Colleague
- Permalink
- Order Reprints
- Rights & Permissions
- Citation Alerts
History
- Just Accepted ManuscriptJanuary 03, 2012
- Received: November 21, 2011
Revised: December 19, 2011
Recommend & Share
Letter
Positionally Defined, Binary Semiconductor Nanoparticles Synthesized by Scanning Probe Block Copolymer Lithography
†Department of Materials Science and Engineering,‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
Nano Lett., Article ASAP
DOI: 10.1021/nl204233r
Publication Date (Web): January 17, 2012
Copyright © 2012 American Chemical Society
*E-mail: chadnano@northwestern.edu.
Author Contributions
These authors contributed equally.
Abstract
We report the first method for synthesizing binary semiconductor materials by scanning probe block copolymer lithography (SPBCL) in desired locations on a surface. In this work, we utilize SPBCL to create polymer features containing a desired amount of Cd2+, which is defined by the feature volume. When they are subsequently reacted in H2S in the vapor phase, a single CdS nanoparticle is formed in each block copolymer (BCP) feature. The CdS nanoparticles were shown to be both crystalline and luminescent. Importantly, the CdS nanoparticle sizes can be tuned since their diameters depend on the volume of the originally deposited BCP feature.
Không có nhận xét nào:
Đăng nhận xét